If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9/x^2-43=76
We move all terms to the left:
9/x^2-43-(76)=0
Domain of the equation: x^2!=0We add all the numbers together, and all the variables
x^2!=0/
x^2!=√0
x!=0
x∈R
9/x^2-119=0
We multiply all the terms by the denominator
-119*x^2+9=0
We add all the numbers together, and all the variables
-119x^2+9=0
a = -119; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-119)·9
Δ = 4284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4284}=\sqrt{36*119}=\sqrt{36}*\sqrt{119}=6\sqrt{119}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{119}}{2*-119}=\frac{0-6\sqrt{119}}{-238} =-\frac{6\sqrt{119}}{-238} =-\frac{3\sqrt{119}}{-119} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{119}}{2*-119}=\frac{0+6\sqrt{119}}{-238} =\frac{6\sqrt{119}}{-238} =\frac{3\sqrt{119}}{-119} $
| 14x-21-5x=-3 | | 31p=-217 | | -32+8+(-2z)=-12 | | 7i=34 | | -5(-5x+7)-8x=-86 | | X-x-56=0 | | -6x-106-5x=92 | | 4x+12-(8x+15)=0 | | 2(8x+4)-8=96 | | -3/5r=3/2 | | ¿85=2x-17¿ | | 120-3/4y=20 | | 4(4x-3)-3=5x-8 | | −(x−6)=27+2x| | | 72/36=x | | -8-d=2 | | -4(2x-9)+3x=6-4(x-3) | | 8(y−1)−3y=6(2y−6) | | 10+(x-2)=-5(x+40 | | 3/4y^2-3=18 | | x=12x/30 | | s/2+10=18 | | 3-(x+8)=3x+11 | | -x-3=7+3 | | 14(g+8)=7+4g | | 204=107-w | | 62+30x=450+30x | | 0.15x+2,000=6,300 | | 4(x+0.2)=21 | | 3s-15=-18 | | 4x-2x-3=2 | | 6v-18=36+8v |